
Shared MemoryShared Memory
ParallelizationParallelization

Thomas J. Watson Research Center
PO Box 218
Yorktown Heights, NY 10598

OutlineOutline

What is Shared Memory
Parallelization
Variable Scoping
Work Sharing
Synchronization
OpenMP
Performance Issues
Future of SMP

What is Shared MemoryWhat is Shared Memory
ParallelizationParallelization

All processors can access all the memory
in the parallel system
The time to access the memory may not
be equal for all processors - not necessarily
a flat memory
Parallelizing on a SMP does not reduce
CPU time - it reduces wallclock time - use
rtc()
Parallel execution is achieved by generating
threads which execute in parallel
Number of threads is independent of the

What is Shared MemoryWhat is Shared Memory
ParallelizationParallelization (continued)(continued)

Overhead for SMP parallelization is large -
size of parallel work construct must be
significant enough to overcome overhead
Runtime handling of parallel threads
important
SMP parallelization is degraded by other
processes on the node - important to be
dedicated on the SMP node
Remember Amdahl's Law - Only get a
speedup on code that is parallelized

Flat Profile - NAS BenchmarkFlat Profile - NAS Benchmark
SPSP

% cumulative self self total
time seconds seconds calls ms/call ms/call name
27.4 31.51 31.51 40 787.75 787.75 .ztasweep [4]
22.5 57.39 25.88 41 631.22 631.22 .rhs [5]
20.6 81.06 23.67 40 591.75 591.75 .etasweep [6]
18.0 101.72 20.66 40 516.50 516.50 .xisweep [7]
10.2 113.45 11.73 1 11730.00 113450.00 .adi [3]
0.7 114.27 0.82 1 820.00 820.00 .erhs [8]
0.2 114.48 0.21 262904 0.00 0.00 .exact [10]
0.1 114.61 0.13 1 130.00 130.00 .setiv [11]
0.1 114.69 0.08 1 80.00 270.37 .error [9]
0.1 114.77 0.08 1 80.00 99.63 .setbv [12]
0.0 114.82 0.05 .__mcount [13]
0.0 114.83 0.01 ._xlfReadLDInt [14]

Variable ScopingVariable Scoping

Most difficult part of Shared Memory
Parallelization

What memory is Shared
What memory is Private - each processor
has its own copy

Fortran conception of Memory
Global

Shared by all routines
Local

Local to routine

Variable Scoping RulesVariable Scoping Rules

Private Variables
A scalar variable that is set and then
used within the DO is PRIVATE
An array whose subscript is constant
with respect to the PARALLEL DO and
is set and then used within the DO is
PRIVATE

Shared Variables
Everything Else

SIMPLE - DIFFICULT to implement

Fortran vs SMP ScopingFortran vs SMP Scoping
Whenever a Fortran GLOBAL
variable is scoped PRIVATE or
when a Fortran LOCAL variable is
scoped SHARED problems arise

Variable passed into a routine scoped
private - FIRST Value getting and
LAST value setting
COMMON block variable within a
called routine needs to be scoped
private

OpenMP DirectivesOpenMP Directives

http://www.openmp.org
Comment line directives for

Scoping Data
Specifying Work Load
Synchronization of threads

Function calls for obtaining
information about threads

OpenMP DirectivesOpenMP Directives
Scoping Variables

Default is shared
Can be set to NONE of PRIVATE

Nothing like CRAY AUTOSCOPE -
user responsible for scoping
anything that is contrary to default
Scoping cannot be done within a
subroutine called from the parallel
DO loop - except with
THREADPRIVATE

OpenMP DirectivesOpenMP Directives

!$OMP PARALLEL / !$OMP END
PARALLEL

Indicate a parallel region for each
thread to execute - must scope all
variables within region

Default
Private
Shared
First
Private
Last
Private
Reduction
If

OpenMP DirectivesOpenMP Directives
!$OMP PARALLEL DO / !$OMP
END PARALLEL DO

Indicate a parallel do for all thread to
shared in work - must scope all
variables within region - Can specify
Worksharing

Default
Private
Shared
First
Private
Last
Private
Reduction
If

SCHEDULE

OpenMP DirectivesOpenMP Directives

!$OMP DO / !$OMP END DO
Indicate a parallel do for all thread to
shared in work - May Scope variables
Can specify Worksharing

Private
Shared
First
Private
Last
Private
Reduction

SCHEDULE

Variable ScopingVariable Scoping

dimension a(1000000),B(1000000),c(1000000)
read *,n
sum = 0.0
call random (b)
call random (c)

!$OMP PARALLEL DO
!$OMP&PRIVATE (i)
!$OMP&SHARED (a,b,n)
!$OMP&REDUCTION (+:sum)

do i=1,n
a(i) = sqrt(b(i)**2+c(i)**2)
sum = sum + a(i)
Enddo

!$OMP PARALLEL ENDDO
end

Each processor
needs
a separate copy of i
everything else is
Shared

dimension a(1000000),B(1000000),c(1000000)
read *,n
sum = 0.0
call random (b)
call random (c)

!$OMP PARALLEL
!$OMP PRIVATE (i,sump)
!$OMP SHARED (a,b,n,c,sum)

sump = 0.0
!$OMP DO

do i=1,n
a(i) = sqrt(b(i)**2+c(i)**2)
sump = sump + a(i)
enddo

!$OMP CRITICAL
sum = sum + sump

!$OMP ENDCRITICAL
!$OMP END PARALLEL

end

Each processor
needs
a separate copy of i
everything else is
Shared

Variable ScopingVariable Scoping

Variable ScopingVariable Scoping

Each processor needs
a separate copy of j,i,c
everything else is
Shared

subroutine example4(n,m,a,b,c)
real*8

a(100,100),B(100,100),c(100)
integer n,i
real*8 sum

!$OMP PARALLEL DO
!$OMP PRIVATE (j,i,c)
!$OMP SHARED (a,b,m,n)

do j=1,m
do i=2,n-1
c(i) = sqrt(1.0+b(i,j)**2)
enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+c(i)**2)
enddo

enddo
end

What about c?
c(1) and c(n)?

Variable ScopingVariable Scoping

Need First Value of c

subroutine example4(n,m,a,b,c)
real*8

a(100,100),B(100,100),c(100)
integer n,i
real*8 sum

!$OMP PARALLEL DO
!$OMP PRIVATE (j,i)
!$OMP SHARED (a,b,m,n)
!$OMP FIRSTPRIVATE (c)

do j=1,m
do i=2,n-1
c(i) = sqrt(1.0+b(i,j)**2)

enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+c(i)**2)

enddo
enddo
end

Master copies it's
c array to all threads
prior to DO loop

What about last value
of c is it needed?

Variable ScopingVariable Scoping

Need First Value of c

User copies what part of
c is needed to all threads
prior to DO loop

What about last value
of c is it needed?

subroutine example5(n,m,a,b,c)
real*8a(100,100),B(100,100),c(100)
real*8 cc(100)
integer m,n,i
real*8 sum

!$OMP PARALLEL
!$OMP PRIVATE (j,i,cc)
!$OMP SHARED (a,b,m,n)

cc(1) = c(1)
cc(n) = c(n)

!$OMP DO
do j=1,m
do i=2,n-1

cc(i) = sqrt(1.0+b(i,j)**2)
enddo
do i=1,n

a(i,j) = sqrt(b(i,j)**2+cc(i)**2)
enddo
enddo

!$OMP END DO
!$OMP END PARALLEL

end

Variable ScopingVariable Scoping

What about last value
of c is it needed?

!$OMP PARALLEL
!$OMP PRIVATE (j,i)

!$OMP SHARED (a,b,m,n)
cc(1) = c(1)
cc(n) = c(n)

!$OMP DO
do j=1,m
do i=2,n-1
cc(i) = sqrt(1.0+b(i,j)**2)
enddo
do i=1,n
a(i,j) =

sqrt(b(i,j)**2+cc(i)**2)
enddo

enddo
!$OMP END DO

if(j.eq.m+1)then
do i=1,n
c(i) = cc(i)

enddo
endif

!$OMP END PARALLEL

subroutine example5(n,m,a,b,c)
real*8 a(100,100),B(100,100),c(100)
integer m,n

!$OMP PARALLEL DO
!$OMP PRIVATE (j)
!$OMP SHARED (a,b,m,n)

do j=1,m
call doit(j,n,a,b)

enddo
end

subroutine doit(j,n,a,b)
real*8 a(100,100),B(100,100)
COMMON cc(100)
do i=2,n-1
IF(a(i,j).gt.SIN(b(i,j)))THEN

cc(i) = sqrt(1.0+b(i,j)**2)
ENDIF
enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+cc(i)**2)

enddo
end

Calling an External from aCalling an External from a
Parallel LoopParallel Loop

subroutine example5(n,m,a,b,c)
real*8 a(100,100),B(100,100),c(100)
integer m,n

!$OMP PARALLEL DO
!$OMP PRIVATE (j)
!$OMP SHARED (a,b,m,n)

do j=1,m
call doit(j,n,a,b)

enddo
end

subroutine doit(j,n,a,b)
real*8 a(100,100),B(100,100)

!$OMP THREADPRIVATE (/BCOM/)
COMMON/BCOM/ cc(100)
do i=2,n-1
IF(a(i,j).gt.SIN(b(i,j)))THEN

cc(i) = sqrt(1.0+b(i,j)**2)
ENDIF
enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+cc(i)**2)

enddo
end

Calling an External from aCalling an External from a
Parallel LoopParallel Loop

Blank Common cannot appear on THREADPRIVATE
How about first value setting???

Not in xlf Version 6.1

subroutine example5(n,m,a,b,c)
real*8 a(100,100),B(100,100),c(100)

!OMP$ THREADPRIVATE (/BCOM/)
COMMON/BCOM/ cc(100)
integer m,n

!OMP$ PARALLEL DO
!OMP$ PRIVATE (j)
!OMP$ SHARED (a,b,m,n)
!OMP$ PARALLEL DO COPYIN(/BCOM/)

do j=1,m
call doit(j,n,a,b)

enddo
end

subroutine doit(j,n,a,b)
real*8 a(100,100),B(100,100)

!OMP$ THREADPRIVATE (/BCOM/)
COMMON/BCOM/ cc(100)
do i=2,n-1
IF(a(i,j).gt.SIN(b(i,j)))THEN

cc(i) = sqrt(1.0+b(i,j)**2)
ENDIF
enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+cc(i)**2)

enddo
end

Calling an External from aCalling an External from a
Parallel LoopParallel Loop

Blank Common cannot appear on THREADPRIVATE
Entire Common Block need not be copied in

Not in xlf Version 6.1

Work Sharing DirectivesWork Sharing Directives
SCHEDULE (type,n)

Runtime
Scheduling is controlled by runtime
environment variable

OMP_SCHEDULE
XLSMPOPTS on xlf Version 6.1

(Static,n)
Iterations are divided into chunks and
pieces are statically assigned to threads in
a round-robin fashion (Default n is iteration
count/parthds)

Not in xlf Version 6.1

Work Sharing DirectivesWork Sharing Directives

SCHEDULE
(Dynamic,n)

Work is divided into chunks of size n. As
each thread finishes a chunk it dynamically
obtains the next set of iterations. (default of
n is 1)

(Guided,n)
Dynamic with chunksize starting at
iterations/parthds, then exponentially
decreasing to n. (default of n is 1)

Comparison of Work SharingComparison of Work Sharing

Iterations 1000
Static,10

1-10, 41-50, 81-90 ...
11-20, 51-60, 91-100 ...
21-30, 61-70, 101-110 ...
31-40, 71-80, 111-120 ...

Dynamic,10
1-10, 71-80, 81-90 ...

11-20,91-100 ...
21-30,51-60, 61-70, 101-110 ...
31-40, 71-80, 111-120 ...

Guided
1-250, 686-764,927-945,971-978, ...
251-438,824-868,902-926
439-579,765-823,960-970
580-685,869-901,946-959

subroutine example5(n,m,a,b,c)
real*8 a(100,100),B(100,100),c(100,100)
integer i,j,m,n

!$OMP PARALLEL DO
!$OMP PRIVATE (i,j)
!$OMP SHARED (a,b,c,n,m)

do i=1,m
do j=i+1,n
a(j,i) = sqrt(b(j,i)**2 + c(j,i)**2)

enddo
enddo
end

What Work Sharing for this?What Work Sharing for this?

subroutine example5(m,a,b,c)
real*8 a(100),B(100),c(100)
integer i,m

!$OMP PARALLEL DO
!$OMP PRIVATE (i)
!$OMP SHARED (a,b,c,m)
!$OMP SCHEDULE (static,10)

do i=1,m
a(i) = sqrt(b(i)**2 + c(i)**2)

enddo
end

QUIZ:QUIZ:

Whats wrong with this?Whats wrong with this?

Tradeoff Load Balancing andTradeoff Load Balancing and
Reduced OverheadReduced Overhead

The larger the size
(GRANULARITY) of the piece of
work, the lower the overall thread
overhead.
The smaller the size
(GRANULARITY) of the piece of
work,the better the dynamically
scheduled load balancing

OpenMP for COpenMP for C

Specification 1.0, October 1998
Same functionality as OpenMP for FORTRAN
Differences in syntax:

#pragma omp parallel
#pragma omp for

Differences in variable scoping:
variables "visible" when #pragma omp parallel
encountered are shared by default
static variables declared within a parallel region are
also shared
heap allocated memory (malloc) is shared (but
pointer can be private)
automatic storage declared within a parallel region is
private (ie, on the stack)

Invoking Parallelization on theInvoking Parallelization on the
Fortran Compile commandFortran Compile command

xlf_r - Fortran 77
xlf90_r - Fortran 90
mpxlf_r - Fortran with MPI

-qsmp -qreport=smplist
recognizes OpenMP and does automatic
parallelization

-qsmp=noauto
recognizes OpenMP and IBM and doesn't
do automatic

-qsmp=omp

What About Automatic?What About Automatic?

xlf has a very good automatic
parallelizer that might do a good job
on a User's program.

When applying it across an entire
program, some loops may slow down,
some may speed up - you should be
prepared to time individual loops
before and after and then selectively
parallelize what you want

What About Automatic?What About Automatic?

xlf has a very good automatic
parallelizer that might do a good job
on a User's program.

Runtime checking of overhead
controlled by runtime environment
variable

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Iterations

500

1000

1500

2000

B
an

dw
id

th
M

B
/S

ec

Copy SEQ
Copy SMP
Copy THR
Copy SMPO

Stream Rates for Scale

Runtime
Check Not
Low
enough

Winterhawk 2-ProcessorWinterhawk 2-Processor

Runtime Enviroment VarsRuntime Enviroment Vars

Some will probably change with Version 7.1 -
OpenMP standard

XLSMPOPTS
parthreshold = num

specifies time in milliseconds below which the loop
will run in serial

seqthreshold = num
specifies time beyond which previous sequential loop
will be run in parallel

profilefreq=num
frequency with which loop should be analyzed
= 0 All profiling turned off

Runtime Management of ThreadsRuntime Management of Threads

When the system encounters the
first Parallelized DO loop the Master
generates the worker threads and
begins working on a chunk of the
Parallel DO loop
After the first Parallel DO loop is
executed, all the worker threads are
put to sleep - regardless of the spin
Environment variable

Runtime Management ofRuntime Management of
ThreadsThreads (continued)(continued)

When the next DO loop is encountered,
the Master wakes up a first worker
thread, the Master continues to work on
the parallel loop. The first worker thread
wakes up the second worker thread and
starts to work on the parallel loop. The
Master may have already started a
second piece of work. The second
thread wakes up the third,

Runtime Enviroment VarsRuntime Enviroment Vars
Some will probably change with
Version 7.1 - OpenMP standard

XLSMPOPTS
parthds=num

default - number of processors
stack=num

default - 4194304
spins=num (Only for locks)

default - 100
yields=num (Only for locks)

default - 10

Runtime Management of ThreadsRuntime Management of Threads

Supply a runtime environment variable
to specify that the threads should be put
in a spin state rather than put to sleep.

This will saturate the CPU, not good if the
node is timeshared
This will effectively reduce the overhead
of threads joining the work section

setenv SPINLOOPTIME 5000

Some Real World ExamplesSome Real World Examples

EMBAR
SP
BT
MG
SWIM

C$OMP PARALLELDO
C$OMP&SHARED (FSDY,FSDX,M,N,U,V,P,CU,CV,Z,H)
C$OMP&PRIVATE (I,J)

DO 100 j = 1, n
DO 100 i = 1, m
cu(i + 1, j) = .5 * (p(i + 1, j) + p(i, j)) * u(i + 1, j)
cv(i, j + 1) = .5 * (p(i, j + 1) + p(i, j)) * v(i, j + 1)
z(i + 1, j + 1) = (fsdx * (v(i + 1, j + 1) - v(i, j + 1)) -

. fsdy * (u(i + 1, j + 1) - u(i + 1, j))) / (p(i, j)

. + p(i + 1, j) + p(i + 1, j + 1) + p(i, j + 1))
h(i, j) = p(i, j) + .25 * (u(i + 1, j) * u(i + 1, j) + u(i, j)

. *u(i, j) + v(i, j + 1) * v(i, j + 1) + v(i, j) * v(i, j))
100 CONTINUE

SWIM - SPEC 95SWIM - SPEC 95

0 1 2 3 4 5 6 7 8 9

Number of Processors

0

50

100

150

200

W
al

lc
lo

ck
(S

ec
)

Sequential
Auto
Auto/No RT
OpenMP
Linear

Shallow Water on Nighthawk

Shallow Water on NighthawkShallow Water on Nighthawk

1 2 4 6 8

Processors

0

1

2

3

4

5

6

7

8

9

S
pe

ed
up

bt
ep
mg
sp

NAS Benchmarks

NAS BenchmarksNAS Benchmarks

